勾股定理由来是什么?

曼安 32 2025-10-11 11:16:00

公元前十一世纪,数学家商高(西周初年人)就提出“勾三、股四、弦五”。编写于公元前一世纪以前的《周髀算经》中记录着商高与周公的一段对话。

商高说:“……故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用数形结合得到方法,给出了勾股定理的详细证明,后刘徽在刘徽注中亦证明了勾股定理。

在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。

勾股定律的意义:

1.勾股定理的证明是论证几何的发端。

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理。

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解。

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。

1、勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。

2、中国最早的一部数学著作《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话,可表明中国早在公元前1100年左右的西周时期就以提出了勾股定理,比毕达哥拉斯要早了五百多年。

3、勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。

4、勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

上一篇:自我保护教案
下一篇:一天中最佳的养生时间是什么时候?
相关文章