初中数学解答题答题技巧有哪些

之云 34 2025-10-22 15:57:56

 数学在初中作为主科之一,是非常容易拉分的科目,那么初中数学解答题答题技巧有哪些呢。以下是由我为大家整理的“初中数学解答题答题技巧有哪些”,仅供参考,欢迎大家阅读。

初中数学解答题答题技巧有哪些

 1. 计算题

 应列式计算,体现运算关系,并按运算顺序进行化简,步骤写完整,不能只写答案;

2. 几何证明题

 观察几何图形,从中分析出边角间的关系. 应从已知条件出发,严密推理,步步有理有据. 证明过程应书写简练、思路清晰、逻辑严密、步骤完整;

  3. 锐角三角函数的实际应用题

 从题设中提取相关信息,合理地寻找直角三角形或作出合适的辅助线将其转化为直角三角形模型,将已知和所求放在直角三角形中进行求解即可;

4. 一次方程和不等式及一次函数的实际应用题

 要仔细审题、读题,通过推敲题设中的关键词(如:多、少、大于、小于、至少、不超过等),寻找等量关系建立方程或不等式是解题的关键;对于涉及一次函数的要注意通过分析题意列出函数关系式,再运用函数性质解题;

5. 类比、拓展探究题

 此类题目一般第(1)问都比较简单,考生在作答时尽可能把第(1)问做对,对于第(2)问和第(3)问,一般都会与第(1)问有一定的联系,可通过分析第(1)问的解法,逐步推理求解;

6. 二次函数压轴题

 一般第(1)问求二次函数解析式是送分题,考生可节约时间快速作答,对于第(2),(3)问,一般会涉及到分类讨论思想,学生做这两问时,一定要考虑周全。

拓展阅读:数学成绩怎么提升

主动预习

 预习是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

 因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。

 抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

 主动思考

 很多同学在听课的过程中,只是简简单单的听,不能主动思考,这样遇到实际问题时,会无从下手,不知如何应用所学的知识去解答问题。

 主要原因还是听课过程中不思考惹的祸。除了我们跟着老师的思路走,还要多想想为什么要这么定义,这样解题的好处是什么,这样主动去想,不仅能让我们更加认真的听课,也能激发对某些知识的兴趣,更有助于学习。

 靠着老师的引导,去思考解题的思路;答案真的不重要;重要的是方法!

 拓宽解题思路

 数学解题不要局限于本题,而要做到举一反三、多思多想,解答完一个题目,要想想有没有其他更加简便的方法,这样能够帮助大家拓宽思路,这样在以后的做题过程中就会有更多的选择。

 必须要有错题本

 说到错题本不少同学都觉得自己的记忆力好,不需要错题本就能记住,这是一种“错觉”,每个人都有这种感觉,等到题目增多,学习内容加深,这时就会发现自己力不从心了。

 错题本能够随时记录自己的知识短板,帮助强化知识体系,有助于提升学习效率。有很多学霸都是因为积极使用了错题本,而考取了高分。

初中数学证明题的解题方法

数学学习时间总是很紧张的,很多知识要点需要背诵,但是总是边学边忘,给很多同学造成困扰。下面我就大家整理一下初中数学解题技巧及口诀,仅供参考

有理数加法运算

同号两数来相加,绝对值加不变号

异号相加大减小,大数决定和符号

互为相反数求和,结果是零须记好

注“大”减“小”是指绝对值的大小

解方程

已知未知闹分离,分离要靠移完成

移加变减减变加,移乘变除除变乘

平方差公式

两数和乘两数差,等于两数平方差

积化和差变两项,完全平方不是它

配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是 数学 中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

填空题解题方法

直接法

直接法是解填空题最基本的方法,它要求同学们直接从题设条件出发,利用定义、定理、性质、公式等知识。通过推理和运算等过程,直接得到结果。

数形结合法

数形结合是一种重要的数学方法,它要求同学们在解题时,根据题目条件的具体特点,做出符合题意的图形,从而做到数中想形,以形助数。

通过对图像的观察、分析和研究。启发解题恩路,找出问题的隐含条件,从而简化解题过程,检验解题结果。

以上就是我为大家整理的初中数学解题技巧及口诀。

初中数学八大思想十大方法

证明三角形全等就是初中证明题的其中一个部分。下面我以一道证明三角形全等的题目来讲解一下证明题的标准解题步格式。

第一步,通读一遍题目,熟悉问题问的是什么?然后带着问题去看图形,随便把已知条件在图中标注出来,这样看起来就一目了然。如下图所示:

第二步,理清思路之后就开始写解题步骤。几何问题,就得先把已知条件和隐含条件写出来。最后题目就迎刃而解了。如下图所示:

第三步,利用第一问的结论作为第二问的条件,然后写出已经条件和过程即可,这也是解题的关键。最后就是检查一下,看一下是否正确即可。如下图所示:

初中数学八大思想十大方法:初中数学八大思想:转化思想、分类讨论思想、整体思想、方程思想、函数思想、数形结合思想、建模思想、类比思想。初中数学十大方法:换元法、待定系数法、配方法、反证法、分析法、综合法、分解因式法、判别式法、公式法、函数法。

数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。

不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。

转化的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。

可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。

数学建模思想

数学模型指根据所研究的问题的一些属性、关系,用形式化的数学语言(概念、符号、语言等)表示的一种数学结构(如多项式、方程式、不等式、函数式以及图形等)。

数学模型方法,指先根据研究的问题建立数学模型,再通过对数学模型的探索进而达到解题目的的方法。此法多用于解决一些实际问题或较繁琐的数学问题。

上一篇:它的用英语怎么说
下一篇:东莞卖蛇吃犯法不?
相关文章